Numerical Schubert calculus via the Littlewood-Richardson homotopy algorithm
نویسندگان
چکیده
We develop the Littlewood-Richardson homotopy algorithm, which uses numerical continuation to compute solutions Schubert problems on Grassmannians and is based geometric rule. One key ingredient of this algorithm our new optimal formulation in local Stiefel coordinates as systems equations. Our implementation can solve problem instances with tens thousands solutions.
منابع مشابه
Certifiable Numerical Computations in Schubert Calculus
Traditional formulations of geometric problems from the Schubert calculus, either in Plücker coordinates or in local coordinates provided by Schubert cells, yield systems of polynomials that are typically far from complete intersections and (in local coordinates) typically of degree exceeding two. We present an alternative primal-dual formulation using parametrizations of Schubert cells in the ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLittlewood–Richardson polynomials
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood–Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier resu...
متن کاملSmall Littlewood-Richardson coefficients
We develop structural insights into the Littlewood-Richardson graph, whose number of vertices equals the Littlewood-Richardson coefficient cνλ,μ for given partitions λ, μ and ν. This graph was first introduced in [BI12], where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood-Richardson coefficient: We design an algorithm for the exa...
متن کاملLittlewood-richardson Semigroups
This note is an extended abstract of my talk at the workshop on Representation Theory and Symmetric Functions, MSRI, April 14, 1997. We discuss the problem of finding an explicit description of the semigroup LRr of triples of partitions of length ≤ r such that the corresponding Littlewood-Richardson coefficient is non-zero. After discussing the history of the problem and previously known result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2021
ISSN: ['1088-6842', '0025-5718']
DOI: https://doi.org/10.1090/mcom/3579